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Maximum growth rate of magnetoatmospheric instabilities: 
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Department of Mathematics, New University of Ulster, Coleraine, N. Ireland 

Received 24 January 1979, in final form 27 April 1979 

Abstract. An upper bound is derived on the growth rates of instabilities occurring in media 
with restoring forces due to compressibility, buoyancy and magnetic fields (a magneto- 
atmosphere). The magnetic field considered is horizontal but arbitrarily varying in the 
vertical direction. The formalism used is based on the concept of an energy inner product in 
Hilbert space. 

In this paper we examine the equations describing motion in a class of media called 
magnetoatmospheres in which the effects of buoyancy, compressibility and magnetic 
fields are of importance in sustaining wave motion. This is a rigorous generalisation of 
previous normal-mode work (Adam 1977) using an approach of Rosencrans (1969) on 
non-magnetic media. For ease of comparison we use a similar notation. 

The linearised equations of momentum, continuity, state and induction are 

po aul /a t  = -apl/axl + Bbb3/4.rr, (1) 

au,, apl B~ abl ab2 
Po-=-- - -  --- a t  ax2 4~ ( ax2 axl ), 

asl/at = -sbu3, ( 5 )  

p1= P O S l / C "  + d P l ,  

ab l l a t  = - ~ ~ ( a ~ , / a x , +  au3/axS)-- B ~ u ~ ,  

ab2/at = B~ au2/axl, (8) 

ab3/at = B~ au3/axl. (9) 
In these equations (ul,  u2, U,) is the fluid velocity, (bl, bz, b3) is the magnetic field 

perturbation, p, p ,  s refer to density, pressure and entropy respectively. The pertur- 
bations of these last three quantities from the equilibrium state (denoted by subscript 
zero) are denoted by subscript one. The equilibrium states of the magnetic field, 
density, pressure and entropy are all functions of the upward vertical ordinate x3. The 
magnetic field taken here is Bo = (BO(x3), 0, 0), gravitational acceleration (constant) 
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g = (0, 0, -g ) ,  y = c,/c, is the ratio of specific heats and c: = y p / p o  is the square of the 
local velocity of sound. It is also assumed that the medium is a perfect electrical 
conductor. 

Primes refer to differentiation with respect to x 3 .  
Equilibrium quantities satisfy 

(10) = K  eso/cv po, Y K constant 

and 

d/dx3 ( p o + B ; / g r )  =-peg, (1 1) 

with ui = 0, i = 1 , 2 , 3 .  s O ( X 3 )  is prescribed. 
As stated by Rosencrans (1969), in the absence of any magnetic field, Schwarz- 

schild’s criterion states that the system is stable if sb ( x 3 )  z 0 for all x 3 ,  and unstable if 
sb(x3) < 0 for at least some x 3  (so assumed smooth and sb bounded). We wish to 
determine an upper bound on the growth rate of instabilities when the horizontal 
magnetic field is present. 

Define 

(gsb ( X ~ ) / C , ) ~ / ~  if S A  ( x 3 )  z o 
I O  otherwise 

W ( X )  = 

when sb(x3)<0, w ( x )  is just the Brunt-Vaisala frequency of oscillation of a fluid 
particle when vertically displaced from equilibrium. 

Define also a= w + iv (clearly Cl* = gsb/c,). Hence Schwarzschild’s criterion can be 
stated as: the system is convectively stable and only if (for zero magnetic field) 

f5 =sup v ( x )  = 0 (Bo = 0). 
X 

We now define new variables 

vi = (poco)1/2uj, i = 1 , 2 , 3 ,  0 4  = -(Po~o)-l’zPl, 
‘/”-ls -1 

v s  = dpoco) 1cp 9 j = 6 , 7 , 8 ,  112 
vj = ( c o / ~ T )  bi, 

where the j ’ s  and i’s correspond. Thus by eliminating p1 in the above equations we 
obtain the system 

CO’ avl /a t  = av4/axl + bo8, (12) 
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~ g ' a ~ ~ i a t  = pav2/axl ,  (18) 

~ i ? a ~ ~ / a t  = pav3/axl .  (19) 

In these equations p ( x 3 )  = Bo/co~4.rrpo)1'2 = ao/co is the (local) ratio of Alfvkn velocity 
ao(x3) to sound velocity C O ( x 3 ) y  P ( x 3 )  = Bb/c0(4.rrpo)'/* and 

It is readily seen that these two terms are equal, since for stable regions 

n2 = gsb/c, = -gpb/po- g 2 / c ; .  

Hence we set A = AZ = A. 
Before proceeding further a point should be made concerning the normalisation 

procedure for obtaining the U , .  This is certainly somewhat artificial in the present 
context for a non-zero magnetic field, since there is an obvious asymmetry in a. and co 
which could be simply amended by an appropriate new normalisation. However, the 
present form brings out explicitly the effect of the magnetic field on the maximum 
growth rate of instability compared with the zero field case; were we concerned with a 
suitable new definition of stability it would obviously be more appropriate to define w 
and U in terms of 

[gsblc, + (g/YPo)(B:/8.rr)'l, 
thus elucidating the stabilising (destabilising) effect of Bb positive (negative). (This 
expression can be obtained very simply from equations (10) and (l l).) This would of 
course give an upper bound on the growth rate with the details of the field configuration 
implicit in the new G. 

We now write the system (12)-(19) in matrix form as 

ci'avlat = (iT + B)v ,  (20) 

where v = ( v l ,  v2,  v3 ,  v4, v5,  v6, v7, us ) ,  T and B = B1 +iB2 +B3+iB4 are defined as 
follows: 
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Thus T'k' is real and symmetric, as is B3, while B1, BZ and B4 are Hermitian. It may be 
noted that with the introduction of the terms in p arising from the presence of the 
magnetic field, equation (20) can no longer be expressed as a symmetric hyperbolic 
system in the sense of Friedrichs, with the present choice of variables, even if p is 
constant. We assume co is bounded away from zero. 

We define the energy inner product as 

where * denotes a matrix transpose, and '-' complex conjugation. This is motivated by 
the conservation of energy law which is satisfied by solutions of (20) 

Thus the quadratic forms U*C;'U and u * T ' ~ ' u  can be formally interpreted as energy 
density and flux of energy (energy per unit area per unit time) respectively. 

Let H be the Hilbert space of measurable functions U : R3 + Cs with finite energy, 
i.e. such that 

/)U112 = (U, U )  < W. 

Let the domain D of the formal operator co( iT+B)  be the linear manifold in H of 
continuously differentiable functions of compact support. 

Given a classical solution to (20), i.e. a function v(x, t )  continuously differentiable 
with respect to x and t, such that 

u + O  as IxI+a3, 

then the differential operator T is self-adjoint relative to the energy inner product, i.e. 

(d/dt)l(vl(' = (a/at) l lul /2 in the linear approximation 

( C O T U ,  v )  = (U, C O T U ) .  so 

= 2 Re(u, U,) 

= 2(coBlv, U )  + 2(cOB3v, v)(from the Hermitian nature of B1, Bz ,  B4) 

acO'G*v dx + 2 co max (Ri )c ; 'b*~ dx, 
~2 JR3 1R3 Aj 

since the eigenvalues of B1 are 0 and *mi', while we suppose for the moment that B3 
has eigenvalues Ai. Hence, if A = sup co max ( A j ) ,  (assuming this exists) then 

" I 

(d/dt)llt./12 s 2(G +A)ll~11~; (22) 

ljvlj s e('+')~jvol1, (23) 

hence 

where U (x, 0) = U&), v o  E H. 
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After some algebra it is found that the eigenvalue equation for B3 is 

A4[A2-~(az+a3)’](A’-aa:) = 0 

A = O ,  *+(aZ+a3), * t a l .  

i.e. 

Writing ai( i  = 1 , 2 , 3 )  out in full, we see that 

a1 = 6 = Bb/co(41rpo)’/’ = PBb/Bo, 

The appropriate eigenvalue chosen will depend on the details of the equilibrium 
distributions of the physical quantities. As two examples let us consider (i) P = 
constant, (ii) 6 = 0. 

Case (i) corresponds to a magnetic field Bo(~3)  varying in such a way vertically that 
ao/co is constant-for example if co is constant then BO(x3)  = Bo(0)  exp( - x 3 / 2 H ) ,  
where H is the constant density scale height. More generally, for co=c0(x3) the 
behaviour will be less simple. Then 

If the equilibrium configurations are such that Bb < 0, this supremum is useful inasmuch 
as it implies that for this case (and indeed for Bb > 0) /IuIl is not bounded independently 
of t ,  even if 3 = 0. It is easy to show that such a field configuration tends to destabilise an 
otherwise stable equilibrium, whereas if BA > 0 this tends to stabilise the pre-existing 
equilibrium, so (23)  appears less useful. We must not confuse, however, the concepts of 
onset of instability and growth rate of instability, the upper limit of the latter being given 
by the energy inequality (23) .  Case (ii) corresponds to a constant magnetic field, and so 

Other examples could be chosen but this will not be done here. A point that should 
be noted is that the behaviour of (in particular) co, po and a. in these examples must be 
such as to keep the suprema finite for large ( X I ,  as, for example, will be the case if these 
quantities approach constant values (non-zero for p o ,  co) as 1x1 + 03. 

In conclusion therefore we have shown in a rigorous manner that any horizontal 
magnetic field (subject, with its derivatives, to appropriate boundedness and continuity 
conditions) affects the maximum growth rate of unstable motions in a magneto- 
atmosphere. This has been proved for the full system of partial differential equations; it 
contains the normal-mode result as a special case. In particular the specific maximum 
growth rates for (i) constant Alfven velocity and (ii) constant magnetic field have been 
obtained. The latter confirms the result of Newcomb (1961) for a normal-mode type 
solution, namely that the presence of a horizontal magnetic field, while not affecting the 
stability of the equilibrium, certainly affects the growth rate of any instability. 
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